


Abstract

The job shop scheduling problem is a significant issue in the field of operations

research and management science. It pertains to the optimal allocation of capital,

goods, and means of production in economic tasks such as education, research,

production, warehousing, transport, and sales. However, finding an optimal solution

to a large problem of this type can be impractical in the real world.

To find a near-optimal solution much faster, various methods are available rang-

ing from simple priority dispatching rules to genetic algorithms. One modern ap-

proach to improving these approximate results is through the use of deep reinforce-

ment learning. An agent learns to build a schedule iteratively. Compared to other

approximation methods, this method achieves very good results with a short pro-

cessing time.

By (dynamically) modulating the difficulty level throughout the learning process,

curriculum learning can be used to further improve the results of deep reinforcement

learning agents. This technique is already used in many subject areas, but is only

very weakly represented in job shop scheduling. This thesis addresses this research

gap and develops and analyses different curriculum learning strategies in the context

of the job shop scheduling problem.

Considering the disclaimer in section 5.3.1, the relative results show that cur-

riculum learning strategy can be advantageous if it not only starts training on the

most difficult instances, but uses them exclusively for training. The difficulty of an

instance is determined using a simple priority dispatching rule. The novel approach

of expanding the problem space, on the other hand, has a negative effect on the final

results.

I



Contents

1 Introduction 1

2 Fundamentals 3

2.1 The Job Shop Scheduling Problem . . . . . . . . . . . . . . . . . . . 3

2.1.1 Problem formulation of the JSSP . . . . . . . . . . . . . . . . 3

2.1.2 JSSP Example . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.4 Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Curriculum Learning for Deep Reinforcement Learning . . . . . . . . 8

2.4 Generalisation with RASCL . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.2 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.3 Inference Strategies . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.4 Curriculum Learning Strategies . . . . . . . . . . . . . . . . . 13

2.4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 CL based on instance difficulty . . . . . . . . . . . . . . . . . . . . . 15

2.5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.2 Curriculum Learning Strategy . . . . . . . . . . . . . . . . . . 16

2.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Related Work 18

3.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Differentiation from the closest work . . . . . . . . . . . . . . . . . . 19

4 Methods 20

4.1 Baseline strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

II



4.2 Termination Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.1 Presentation of the strategies . . . . . . . . . . . . . . . . . . 21

4.3 Combination of RASCL and DTS . . . . . . . . . . . . . . . . . . . . 23

4.3.1 Combined Curriculum Learning (CCL) . . . . . . . . . . . . . 24

4.3.2 Spaced Sampling Curriculum Learning (SSCL) . . . . . . . . . 25

4.4 Hard Instances Curriculum Learning (HICL) . . . . . . . . . . . . . . 27

4.5 Interpolated Sizes Curriculum Learning (ISCL) . . . . . . . . . . . . 29

5 Experiments 32

5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1.1 Used Inference Strategies . . . . . . . . . . . . . . . . . . . . . 33

5.2 Custom Metrics / Performance Measurement . . . . . . . . . . . . . . 33

5.3 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3.1 Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3.2 Gap Difference . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3.3 Relative Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3.4 Correlation between Relative Gap and Gap Difference . . . . . 39

5.3.5 Results on Taillard’s instances . . . . . . . . . . . . . . . . . . 40

5.4 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Future Work 44

III



Chapter 1

Introduction

In the field of operational research and management science, the Job Shop Schedul-

ing Problem (JSSP) is one of the most explored combinatorial optimisation prob-

lems. It is organised as a set of tasks, each consisting of a sequence of operations, to

be performed on a variety of machines in the shortest possible time. The formulation

of this holds significant importance in optimising the scheduling of real-world tasks.

It applies to any economic task that deals with the optimal assignment of capi-

tal goods versus means of production, such as education, research, manufacturing,

storage, transportation, and sales. [1, 2]

Creating consistently efficient schedules poses a significant challenge. The issue

stems from the fact that achieving an optimal schedule often requires expensive and

impractical procedures. Since these scheduling problems can be a daily challenge

in planning and operation of manufacturing systems, the solution methods have to

be able to solve these problems within short amounts of time to be practical in the

real-world. Simple heuristics, such as priority dispatching rules (PDR), can be used

to obtain near-optimal solutions a lot faster, than optimal solvers. [3, 4]

Optimal solvers already exist [5], but they may not be suitable for larger JSSP in-

stances due to their polynomial runtime. There is a gap between slow and optimal

solvers and fast sub-optimal solvers. Therefore, additional research is necessary.

A modern approach uses deep reinforcement learning (DRL) to derive improved

heuristics automatically from interaction data between an agent and a planning en-

vironment. These virtual environments usually generate random problem instances

in a random order for the training process. [6, 7]

Curriculum learning (CL) can be a useful method to improve both learning speed

1



and final performance, as [6, 7] show. This method involves presenting the learning

agent with problems of intentionally varying difficulty levels throughout the training

process. The difficulty can be varied in many different ways. [6] varies the difficulty

by dynamically switching between the different problem sizes in the training process,

while [7], in contrast, uses CL to sort the problem instances within a problem size

by difficulty. The difficulty of a given instance is determined by the performance of

a primitive PDR.

Deep reinforcement learning is a very time-consuming process, which is why

optimising the learning speed is of great advantage. In this thesis, different CL

approaches are developed, implemented, tested and compared. Specifically, the

curricula of [6] and [7] are combined so that the agent switches dynamically between

the problem sizes and, in addition, the problem instances within a problem size are

ordered according to the solution difficulty. Finally, all approaches are compared

and the influence on the overall goals of improving the learning speed and the final

performance are compared.

2



Chapter 2

Fundamentals

This chapter covers the fundamentals necessary for this work. It begins by defining

the job shop scheduling problem. Next, it introduces deep reinforcement learning

and its relation to the JSSP. Finally, this chapter explains curriculum learning and

its relation to Deep Reinforcement Learning and the Job Shop Scheduling Problem.

Additionally, two different methods for applying CL to the JSSP are presented.

2.1 The Job Shop Scheduling Problem

The JSSP is a NP-hard combinatorial optimisation problem. NP-hardness (non-

deterministic polynomial-time hardness) is a classification of problems that are at

least as difficult as the hardest problems in NP . NP (nondeterministic polynomial

time), on the other hand, is the set of decision problems that can be solved in

polynomial time by a nondeterministic Turing machine. [8]

The solution methods for the JSSP balance optimality and computation time.

Although constraint programming and integer programming can obtain optimal so-

lutions, they are computationally expensive and impractical for larger problem in-

stances. Simple PDRs are much faster and can solve JSSP instances in linear time,

while achieving suboptimal solutions.

2.1.1 Problem formulation of the JSSP

The classic deterministic JSSP is defined as a finite set of n jobs {Ji}ni=1. These

have to be processed on a finite set of m heterogeneous machines {Mk}mk=0. Each

job consists of a finite sequence of m operations Oi,1 → . . .→ Oi,m that have to be

3



processed in a predetermined order. Each operation Oi,j is assigned to a machine

Mk for a given processing time Di,j. [6]

The total execution time (total time taken to process all jobs) is referred to as

the makespan Cmax and the optimal (minimal) makespan as C∗
max. The goal of this

problem is to determine the order in which operations are scheduled to minimise

the makespan. [1, 9]

The JSSP model works within a set of 3 constraints [6, 3], as outlined below:

(c1) No-overlap constraint: It ensures that each machine shall process only one

operation at a time

(c2) Non-preemptive constraint: It states that once the processing of any op-

eration is initiated, it shall not be interrupted before completion

(c3) Precedence constraint: It establishes the order of operations inside a job

Ji, where operation Oi,j+1 shall not be scheduled until the previous operation

Oi,j of the job Ji is completed

A JSSP instance is referred to with its given size as n × m. For example, an

instance with 30 jobs and 15 machines has a problem size of 30 × 15. To measure

the optimality of a solution, the makespan is set in relation to the makespan of an

optimal solution. This metric is called the optimality gap δ and is defined as follows:

δ =
Cmax − C∗

max

C∗
max

(2.1)

An optimal solution has an optimality gap δ of 0%. For example, a solution with a

makespan of 14 and an optimal makespan of 10 has an optimality gap of

δ = 14−10
10

= 0, 4 = 40%. This value is the decisive key figure for measuring how well

a method can solve a JSSP.

2.1.2 JSSP Example

The following table is a description of an exemplary 3× 3 JSSP instance presented

by Yamada et al. [1]. Each of the three jobs comprises one row with the three

operations. Each operation is described by a tuple of the assigned machine and the

processing time. The precedents of the operations of a job are given by the order of

4



the operations. For example, the operation O1,2 → (2, 3) is the second operation of

the job J1 that has to be processed on machine M2 for 3 time units, after operation

O1,1 and before operation O1,3.

i Oi,1 Oi,2 Oi,3

1 (1, 3) (2, 3) (3, 3)

2 (1, 2) (3, 3) (2, 4)

3 (2, 3) (1, 2) (3, 1)

Table 2.1: An exemplary 3× 3 JSSP instance

The following two figures show two possible solutions for the given scheduling prob-

lem as a Gantt chart. The y-axis is divided into three areas for the three machines

and the x-axis is divided into discrete time steps. Each operation is shown with the

corresponding processing time as the length in the row with the assigned machine.

Both solutions meet all constraints, but the second solution (figure 2.2) is superior

to the first (figure 2.1) as it utilises the machines more efficiently and results in a

shorter makespan.

The first solution is created with an algorithm that iteratively selects a random

operation in n ·m steps and inserts it into the production plan. It was constructed

in less than 0.6ms. The second solution is an optimal solution created with the

SP-SAT solver by OR-Tools [5] in less than 7ms.

0 2 4 6 8 10 12 14 16

M1 J1 J3 J2

M2 J3 J1 J2

M3 J1 J2 J3

Figure 2.1: A randomly generated solution of the JSSP instance in table 2.1.2

0 2 4 6 8 10 12

M1 J1 J2 J3

M2 J3 J1 J2

M3 J2 J1 J3

Figure 2.2: An optimal solution of the JSSP instance in table 2.1.2

5



The second (optimal) solution results in a makespan of Cmax = C∗
max = 12, while the

first (randomly generated) solutions results in a makespan of Cmax = 16. Therefore,

the first solution has an optimality gap of δ = 16−12
12
≈ 33.33%.

2.1.3 Datasets

There are different sets of JSSP instances with their corresponding best known

solutions. The sets from Taillard (TA) [10] and Demirkol [11] are often used to

evaluate different methods of solving the JSSP. Taillard’s set contains 80 instances

with problem sizes ranging from 15 × 15 up to 100 × 20. The machine orders and

processing times are sampled from a normal distribution from the interval 1− 100.

Demirkol’s set contains 80 instances with problem sizes ranging from 20× 15 up to

50× 20.

Proposals exist for more advanced datasets that take diversity in jobs and opera-

tions into account, as discussed by Kemmerling et al. [12]. However, older methods

logically do not incorporate these datasets into their evaluation processes due to their

up-to-date nature. In this work, only the datasets from Taillard [10] and Demirkol

[11] are used because reevaluating existing methods with this new dataset can be

very time-consuming.

2.1.4 Solution Methods

In general, algorithms created to solve scheduling problems can be classified into

two main categories: exact algorithms and approximate algorithms. A number of

approximation algorithms have been developed in addition to exhaustive search al-

gorithms based on branch and bound methods. The most commonly used ones in

practice are based on PDRs and active schedule generation [13]. Shifting bottle-

neck (SB) [14], a more sophisticated method, has been shown to be very successful

Exact Algorithms Approximate Algorithms
- algorithms based on - Priority Dispatching Rules (PDRs) [13]
branch and bound methods - Shifting Bottleneck [14]
- SP-SAT solver by OR-Tools [5] - Active Schedule Generation

- Genetic Algorithms [15]
- Machine Learning (section 2.2)

Table 2.2: Incomplete list of solution algorithms and their classification

6



[14]. Stochastic approaches, such as simulated annealing (SA), tabu search [16], and

genetic algorithms (GAs), are also used. [1, 2]

2.2 Deep Reinforcement Learning

AI

ML

DL

Figure 2.3: Venn diagram
representing the relationships
between artificial intelligence
(AI), machine learning (ML)
and deep learning (DL)

In order to define deep reinforcement learning, more

basic terms must first be introduced, starting with

machine learning - a subcategory of the very general

field of artificial intelligence (AI). Machine learning

(ML) involves the study and development of algo-

rithms that enhance their performance through expe-

rience, focusing on inducing models with minimal hu-

man intervention, primarily relying on data. When

addressing a problem, individuals typically create a

model or program capable of solving it. However, in

many cases, accurately formalising the problem can

be challenging. For example, considering the task of creating a program to dis-

tinguish between images of cats and dogs. Traditional approaches might involve

manually identifying distinguishing features of each animal, a process that requires

expertise and time. In contrast, a machine learning algorithm simplifies the task by

allowing the system to automatically generate a model from the available data. This

approach presents numerous opportunities for practical applications, especially in

scenarios where formalising or programming a solution is challenging, yet relevant

data is accessible. [17]

There a three basic ML paradigms - supervised learning (SL), unsupervised learn-

ing (UL) and reinforcement learning (RL). SL tries to generalise the mapping from

input values to the given corresponding output values. These could be RGB values

from an image, for example, while the output is an one-hot-encoded array of classes.

Both, the input and output values can be discrete or continuous. UL focuses on

uncovering patterns or structures within data without labelled outputs. In unsu-

pervised learning, the algorithm explores the inherent relationships and associations

within the input data to reveal hidden insights. This paradigm is particularly use-

ful when the task involves discovering underlying structures, clustering similar data

7



points, or reducing the dimensionality of the input space. [18]

On the other hand, RL revolves around the concept of learning through interac-

tion with an environment. In RL, an agent takes actions in an environment, receives

feedback in the form of rewards or penalties, and adjusts its strategy to maximise

cumulative rewards over time. The strategy arises from the implementation of the

rules from the policy. RL algorithms employ the approach of acquiring knowledge

through sequences of actions, observations, and rewards in the environment. RL

has demonstrated remarkable success in diverse tasks, ranging from robotics [19] to

resource allocation [20]. [21, 17]

The integration of deep learning (DL) techniques into the framework of rein-

forcement learning has given rise to the paradigm of deep reinforcement learning

(DRL). Deep learning involves the use of neural networks to automatically learn

hierarchical representations of data, enabling more effective feature extraction and

abstraction. In the context of reinforcement learning, the incorporation of deep

learning allows the agent to handle high-dimensional input spaces, such as raw pixel

data from images or raw sensor inputs. This capability significantly broadens the

scope of problems that can be addressed, as DRL excels in tasks where traditional

RL methods struggle due to the complexity and richness of the input information.

2.3 Curriculum Learning for Deep Reinforcement

Learning

Neural networks form the fundamental building block for most deep learning appli-

cations and are modelled on the human brain. It therefore makes sense to try to

replicate not only the structure of the brain, but also to model the way it learns.

Humans generally learn with increasing complexity over time. They start with sim-

ple problems and concepts and then move on to difficult and complex ones. This

intuitive approach can be found in the curricula of school systems all over the world.

[22]

CL can lead to two fundamental advantages: increasing the convergence speed

of the training process and better final performance. The empirical results from

Soviany et al. [22] show the clear benefit of using CL instead of a random mini-

batch approach.

8



The genesis of CL can be traced back to the work of Bengio et al. [23], who in-

troduced the concept in 2009, formalizing the method within the domain of machine

learning. Subsequent to this seminal work, various categories of CL have been for-

mulated. Soviany et al. [22] have systematized these diverse methods: Vanilla CL,

Self-paced learning (SPL), Balanced CL (BCL), Self-paced CL (SPCL), Teacher-

student CL, Implicit CL (ICL), Progressive CL (PCL).

These classes are largely independent of each other and classify different aspects. For

example, if a CL approach is not explicitly defined but arises implicitly from other

rules, it would fall under the ICL class. However, this does not exclude the possibility

that other classes may also apply, as they are independent. If an approach uses a

static pace, it falls under the Vanilla-CL class. On the other hand, if a dynamic

pace is used, the approach can be classified as a SPL. The use of a dynamic model

results in classification as a PCL. If there are additional constraints, it is considered

a BCL. If two models form a teacher-student architecture, it is a teacher-student

CL. Soviany et al. [22] even define an additional class for the combination of static

and dynamic speed, as this occurs frequently: SPCL. [22]

These classes can be viewed as independent dimensions rather than disjoint cat-

egories. Clear classification may be challenging under certain circumstances, and

the classes serve more as a framework. This description of the classes is incomplete,

and other factors may play a role that are harder to define. In the context of this

thesis, a subset of these methods is explored in greater detail. [22]

Vanilla CL or just CL is the name of the method Bengio et al. [23] coined in

2009. They first introduced the approach of increasing the difficulty during training

[22]. In many cases, CL is only mentioned if the speed at which the difficulty is

adjusted is already prescribed. If the curriculum adjusts the pace of increasing

difficulty based on the model’s performance, this is known as self-paced learning

(SPL) or self-paced curriculum learning (SPCL). [24]

Self-paced curriculum learning (SPCL), a paradigm combining SPL and CL,

involves the joint utilisation of predefined criteria and learning-based metrics to

establish the training order of samples. Jiang et al. [24] initially introduced this

paradigm, employing it in the domains of matrix factorisation and multimedia event

detection. [22]

Furthermore, even more methods and combinations can be created. In addition

9



to the methods presented so far, a distinction can also be made between two basic

frameworks: data-level curriculum learning and model-level curriculum learning. A

distinction is made here between changing the training data and changing the model

itself during training [22]. A combination of the two is also possible. However, this

work only deals with data-level CL.

The difficulty with any CL approach is to develop a curriculum that supports

the model in learning - increased speed of learning and improved final results are

the main objectives.

2.4 Generalisation with RASCL

This section summarises the approach of Iklassov et al. [6] from the paper On the

Study of Curriculum Learning for Inferring Dispatching Policies on the Job Shop

Scheduling. It is a relatively recent paper from November 2022, which focuses on

the generalisation of dispatching rules on the JSSP. Generalisation, in this context,

refers to the ability to solve different sizes of the JSSP. This work forms the basis of

this thesis. The proposed model architecture is adopted unchanged, but the training

procedure, including the curriculum, is fundamentally changed and discussed later

in chapter 4. The implementation available online1 forms the code basis for this

thesis.

An established method for enhancing generalisation is to employ CL, which in-

volves training on progressively challenging instances. Nevertheless, studies from

Lisicki et al. [25] suggest that this approach may encounter the challenge of catas-

trophic forgetting when applying learned skills to various problem sizes. In order to

tackle this issue, Iklassov et al. [6] proposed an innovative strategy called Reinforced

Adaptive Staircase Curriculum Learning (RASCL). This approach dynamically mod-

ulates the difficulty level throughout the learning process, allowing for a revisit of

the most challenging instances to prevent performance deterioration.

1https://github.com/Optimization-and-Machine-Learning-Lab/Job-Shop/tree/main_

nips

10

https://github.com/Optimization-and-Machine-Learning-Lab/Job-Shop/tree/main_nips
https://github.com/Optimization-and-Machine-Learning-Lab/Job-Shop/tree/main_nips


2.4.1 Method

Iklassov et al. [6] address the JSSP as a Markov Decision Process (MDP), wherein

the model iteratively constructs a solution based on the operations that are yet

to be scheduled, as well as on the state of the problem resolution. The model is

equivariant with respect to job information and size-agnostic, enabling Iklassov et

al. [6] to train the model on different problem sizes. This attribute is key for the

generalisation study conducted in their paper.

To complete a schedule of a JSSP instance, n ·m dispatches have to be assigned

sequentially. The autoregressive model solves a problem x, by iteratively dispatching

one operation at a time according to its scheduling policy. At a decision step t, the

model takes the instance definition and the state st as inputs for the resolution

process, generating a probability distribution for the action at at that time. The

chosen operation is then scheduled, resulting in the acquisition of the next state

st+1. This process iterates until all pending operations are scheduled. The solution

y is defined as the sequence of selected actions a1, a2, ..., anm. Where at ∈ {1, . . . , n}

is the index of scheduled job Ji. This means that each of the n indices should occur

exactly m times in at.

The reward of the DRL agent is defined as the difference of the makespan before

and after the dispatch of an operation. The cumulative reward is therefore equal to

the negative makespan of the plan. [6]

2.4.2 Model Architecture

The proposed architecture involves a two-stage process, starting with deep learning

input preprocessing and followed by policy inference using actor-critic networks. The

model’s input is divided into two branches, namely static and dynamic components.

The static input encompasses information regarding all operational blocks within

a given job Ji and is incorporated into the upcoming operation through a reversed

Long Short-Term Memory network (rLSTM) [26]. This rLSTM propagates infor-

mation from the final operation (indexed as m) of job Ji backward to the current

operation (indexed as j). [6]

Simultaneously, the dynamic input captures details about the current environ-

ment state, including operations currently in progress, machine statuses, and re-

11



maining processing times. The embeddings from both static and dynamic branches

are concatenated into multidimensional representations, which are then input into

actor-critic networks for reward calculation of the current state and to suggest the

next dispatch. [6]

To ensure size-agnostic functionality, the model operates on multidimensional

embeddings of actual 3-dimensional operations. Specifically, for scheduling an oper-

ation at any given time, the architecture employs a reverse LSTM that propagates

information from the last operation in a job to the current operation. This reverse

LSTM output is then fed into a set2set module [27], which proves particularly useful

in aggregating information from all embeddings generated by the rLSTM. Impor-

tantly, this module disregards the positioning indices of operations within their jobs,

facilitating the circulation of updates between jobs. [6]

Figure 2.4: Proposed RL architecture from [6]

2.4.3 Inference Strategies

When dealing with choosing an action based on a probability distribution, as men-

tioned in subsection 2.4.1, there is a need for a strategy. The simplest strategy, called

greedy, always chooses the action with the highest probability. However, as [28] and

[29] show, it can be very useful to choose more complex strategies to improve the

results. [6]

The second strategy presented by [6] is sampling. During sampling, strategy

actions are selected randomly from the policy distribution. Consequently, the sug-

gested actions for the same state and instance may vary. To ensure the superiority of

12



the sampling strategy over greedy, it necessitates fine-tuning over a certain number

of training iterations. [6]

POMO is another strategy. Policy Optimisation with Multiple Optima (POMO)

integrates elements from both greedy and sampling strategies. Starting at the initial

state s0, it generates multiple actions {a(1)0 , a
(2)
0 , . . .} and subsequently creates various

possible trajectories {s(1)1 , s
(2)
1 , . . .}, evolving these trajectories in a greedy manner.

In a study by the authors [30], it is shown that, for certain combinatorial problems,

this approach yields superior results compared to the sampling strategy. [6]

Finally, the Beam Search strategy is presented. This strategy [31, 32] follows a

greedy approach by selecting k actions {a(1)0 , . . . , a
(k)
0 } at the initial state s0, thereby

creating k trajectories {s(1)1 , ..., s
(k)
1 }. Subsequently, for each trajectory, a new set of

k actions is unfolded, expanding the total number of available actions to k × k. To

prevent an excessive increase in the number of explored trajectories, the likelihood

of each action is computed. The strategy then greedily opts for the next k actions

with the highest likelihood. In this manner, Beam Search systematically explores

the k most likely trajectories at each step. Greedy is just a special case of Beam

Search if k is set to 1. [6]

Tests from Iklassov et al. [6] showed that, when employing three possible tra-

jectories for both POMO and Beam Search, both strategies exhibit approximately

similar results. However, the greedy algorithm performs slightly worse as it repre-

sents a special case of Beam search. Notably, the sampling strategy outperforms all

others across all test sizes, and is used for training in all experiments. [6]

2.4.4 Curriculum Learning Strategies

To develop curriculum learning strategies for the JSSP, the basic assumption is made

that a larger problem size is more complex and requires more time to train a model.

The authors present four different CL approaches, including a novel approach that

yields significantly better results. These approaches are briefly explained below.

Incremental Curriculum Learning (ICL) involves sequentially training the model

on progressively challenging levels. Specifically, in the context of the JSSP, a model

is trained on each problem size over a fixed number of learning steps. However, the

inherent limitation of this straightforward strategy is the model’s susceptibility to

catastrophic forgetting when exposed to instances of consecutive complexity grades

13



[25]. Additionally, this approach results in a growing number of models, eventu-

ally equating to the number of relevant problem sizes, rather than having a single

universal policy. [6]

Uniform Curriculum Learning (UCL) involves selecting a problem of random size

from uniformly distributed difficulty levels at each iteration. This approach ensures

that the model is randomly exposed to various training levels, promoting a policy

that is inherent to different problem sizes. Nevertheless, according to the findings in

[25], it appears that the learning process is more effective when focused on smaller-

size tasks rather than uniformly sampling from tasks of all sizes. This suggests that

a uniform distribution of difficulty levels may not be the most advantageous learning

strategy. [6]

Adaptive Staircase Curriculum Learning (ASCL) introduces a controlled level of

flexibility in determining the next JSSP problem size for training. It was introduced

to RL in [25]. The problem sizes are assigned a sequential order, so that these

variables can be seen as a staircase ascending in difficulty, ranging from lmin to lmax.

The current level l is set to lmin in the beginning. At each time step t there are 3

possible options the strategy can choose from:

1. Advance to the next problem size l← l + 1, if l + 1 ≤ lmax

2. Stay at the current problem size l

3. Regress to the previous problem size l← l − 1, if l − 1 ≥ lmin

The strategy, however, solely evaluates the model’s behaviour for adjacent difficulty

levels, specifically those with a step difference of 1. This method does not assess the

model’s generalisation performance across other difficulty levels. It can therefore

easily suffer from catastrophic forgetting. [6]

One of the main contributions from [6] is RASCL. A strategy that tries combines

the advantages of different strategies: the learning speed of ASCL and the stability of

UCL. In each ith iteration, the RASCL algorithm compares future rewards to those of

the optimal solution. To be precise, it normalises optimality gaps for each difficulty

level l′ ≤ l and transforms them into probabilities, denoted as g. This process

assigns higher probabilities to larger gaps, with each probability corresponding to a

specific problem size. The agent undergoes u iterations of learning at level l, after

which the gap to optimal is compared to a threshold value topt. If the gap closes,

RASCL adopts the next problem size for training like ASCL (l ← l + 1). However,

14



if the gap does not close, every b steps, the algorithm samples a smaller level l′ from

the distribution of gaps. This algorithm is described in more detail as pseudo code

in section 4.2.1.

Revisiting and anchoring the most challenging difficulty levels, the proposed

algorithm reinforces a recently learned policy. Unlike ASCL, it enables backtracking

to all problem sizes previously encountered by the agent. Derived from the former,

RASCL directs the model’s attention to the sizes of JSSP where its performance is

poorest while maintaining flexibility to revisit any size. [6]

2.4.5 Results

Iklassov et al. [6] presented methods that reduced the average optimality gaps from

19.35% to 10.46% on the Taillard instances [33] relative to state-of-the-art works

on JSSP [32, 34]. Similarly, for the Demirkol instances, a reduction from 38.43% to

18.85% was achieved. [6]

2.5 CL based on instance difficulty

This section addresses the work of Waubert de Puiseau et al. [7]. The authors claim

that in real-world scenarios, the number of machines is often constant and existing

work focuses only on the variability of problem sizes. Therefore a different approach

to CL is used in order to optimise the training speed as well as the final results.

They investigate the effect of more granular CL within a constant problem size, as

these have not yet been investigated. [7]

The primary distinction from [6] is the fundamental CL approach to the JSSP.

In [7], the JSSP instances are ordered within a problem size, while [6] focuses on the

order of the problem sizes themselves. As a result, a distinct model is trained for

each necessary problem size. CL is utilised by dynamically incorporating variations

in difficulty within a constant problem size into the learning process. [7]

2.5.1 Method

Waubert de Puiseau et al. [7] extend the method and framework from Zhang et al.

[34]. Their method specifically adapts the interaction logic of the DRL agent with

15



the simulation, the action evaluation signal, the input formulation, and the network

architecture. As in [6], the difference between the makespan before and after the

dispatch is used as the reward. [7]

There is no explicit mention of inference strategies. However, it is very likely

that greedy is used, since the agent is ”choosing from the list of still unfinished jobs

in each iteration step” [7]. A more complex strategy such as POMO or Beam Search

would most likely be mentioned. [7]

2.5.2 Curriculum Learning Strategy

Creating a CL strategy similar to RASCL may seem straightforward, as the dif-

ferent JSSP problem sizes implicitly provide a ranking of difficulties. However, to

determine the difficulty of instances within a problem size, a custom feature is es-

sential. Given that instances of the same problem size inherently share the same

computational complexity, the authors rely on a characteristic determined by their

proficiency in solving instances through a well-established set of rules, namely PDRs.

Waubert de Puiseau et al. [7] create the feature difficulty to solve (DTS) which is

characterised by the makespan achieved by the most competitive PDR on a given

problem instance. JSSP instances with a shorter than average makespan are defined

as easy tasks and instances with a longer than average makespan are considered as

hard tasks. When solving 40,000 randomly generated 6x6 JSSP instances with six

frequently used PDRs, most tasks remaining (MTR) achieves the lowest makespans

on average with an optimality gap of about 16%. The machine orders and processing

times are sampled from a normal distribution from the interval 0− 100, as in Zhang

et al. [34]. [7]

After generating the task, the authors then focus on sequencing, determining

the order in which to present the training experience. To cover more than just

the intuitive approach of ever-increasing complexity, the authors split the generated

instances into easy and hard halves. By adding the option to reverse the order of

any half, four possible halves are created, referred to as curriculum elements (CEs).

Combining two CEs results in 16 possible curricula that can be considered. [7]

The experiments are structured to attribute differences in agent behaviour and

performance solely to the training curricula. Separate RL-agents are trained for each

of the 16 curricula until all instances are presented once. As a baseline, three RL-

16



agents are trained on randomly shuffled data with varied initial seeds. Testing occurs

on a fixed dataset of 1000 problem instances after every 2000 training instances. To

enhance statistical significance, three different training datasets with varying seeds

are sampled. These experiments are conducted independently on three datasets. [7]

2.5.3 Results

The results show a swift decrease in the mean optimality gap of the three validation

instances of all agents. This dip occurs in the training process from 2,000 to 6,000

instances, followed by gradual convergence to higher optimality gaps. Notably, over

70% of agents find their global minimum in the initial dip, showcasing the early

formulation of a successful strategy. However, they do not revert to it, instead

converging towards a higher optimality gap. The best results are achieved by the

agents that were have trained on the hardest data first (i.e. the harder half sorted

by DTS in descending order). The worst results are achieved by the agents who

first trained on the simple instances in ascending order. The second CE of each

curriculum has no significant impact on the performance of the agents. However,

a small positive influence of hard instances at the beginning of the CE can still

be observed. Overall, Waubert de Puiseau et al. [7] achieve 3% (0.5%p) better

optimality gaps compared to training with random instances.

17



Chapter 3

Related Work

This chapter examines previous research on the job shop scheduling problem, deep

reinforcement learning, and curriculum learning. The objective of this thesis is to

identify effective curriculum learning strategies for deep reinforcement learning in

the context of the job shop scheduling problem, which involves the integration of

these three areas. However, the following literature review reveals that there has

been limited research in this field so far. Only two papers, [6] and [7], have been

published on this topic.

3.1 Literature Review

There are many works on all three of these topics. But since a search for a combi-

nation of the three topics mentioned only yields the two works already mentioned,

the search is more generalised to the combination of reinforcement learning and the

JSSP. The main source of literature for this work is Google Scholar (GS) [35]. This

literature review considers the sorting of the results in three different ways:

1. Google Scholar’s [35] relevance

2. Number of citations

3. Number of citations per year since publication (average of all years)

It is important to note that GS shows the number of citations, but does not offer to

sort by them. However, open-source software from Wittmann [36] makes it possible

to use GS in such a way that sorting by citations or citations per year is also possible.

To show that CL has only very rarely been applied to DRL for the JSSP, the

table 3.1 shows the 5 most frequently cited works when searching GS for ”job shop

18



Citations Title Year
623 A reinforcement learning approach to job-shop scheduling [37] 1995
354 Dynamic job-shop scheduling using reinforcement learning

agents [38]
2000

325 Optimisation of global production scheduling with deep rein-
forcement learning [39]

2018

268 Dynamic scheduling for flexible job shop with new job inser-
tions by deep reinforcement learning [40]

2020

247 A reinforcement learning approach to parameter estimation
in dynamic job shop scheduling [41]

2017

Table 3.1: 5 most cited papers on Google Scholar [35] for ”job shop scheduling
reinforcement learning”.

scheduling reinforcement learning”. Regardless of whether one selects the papers by

GS’s relevance, number of citations, or number of citations per year, none of the

resulting papers use curriculum learning. The two papers covering all topics were

published in the last few years (2022 and 2023), suggesting ongoing research in this

area.

3.2 Differentiation from the closest work

The work of Iklassov et al. [6] and Waubert de Puiseau et al. [7] deal with a very

similar topic to this work. Nevertheless, there are major differences.

The authors of [6] base the development of the curriculum on the assumption

that smaller problem sizes of the JSSP are easier to solve than larger ones. The

presented approach RASCL represents (also independent of the JSSP) a method

with which DRL agents can learn more effectively in order to achieve better final

results. However, the solvability of all instances within a problem size is regarded

as equivalent. The authors of [7], on the other hand, focus on finding differences

in the difficulty of solving JSSP instances within a problem size. This property is

manifested in a feature and serves as a basis for the development and investigation

of different curricula. However, the DRL agents are only ever trained on one JSSP

problem size. The training of an agent on several problem sizes is not carried out.

This work builds on the implementation of [6] and the findings of [6] and [7] to

develop even more sophisticated curricula.

19



Chapter 4

Methods

This chapter discusses the used methods, including the baselines, termination cri-

teria, and CL strategies developed in this thesis. The implementation of this work

is based on that of [6], and the methods explained in section 2.4.1 serve as a basis.

Further details on the experimental setup are provided in section 5.1.

To provide a better overview of the various problem sizes, a few sets of problem

sizes are defined in advance. The 10 standard problem sizes (SPS) ranges from 6×6

to 100 × 20. These variables can be subdivided into smaller groups, as shown in

Table 4.1. The set of 8 problem sizes of TA is a subset of the SPS. TA is only

missing the two smallest sizes 6× 6 and 10× 10.

Small problem sizes 6× 6, 10× 10, 15× 15, 20× 15

Medium problem sizes 20× 20, 30× 15, 30× 20, 50× 15

Large problem sizes 50× 20, 100× 20

Table 4.1: 10 standard problem sizes (SPS) divided into 3 size classes

4.1 Baseline strategies

Two CL strategies are used as a basis for comparison. On the one hand, the RASCL

algorithm is used unchanged as a comparison; on the other hand, an agent without

a curriculum is also trained (NOCL). These two strategies are shown as pseudocode.

The RASCL algorithm from [6] is rewritten in adjusted notation to be consistent

with the other strategies and aid comparability.

20



4.2 Termination Criteria

All CL strategies use the same termination criteria as RASCL. The algorithm ter-

minates, when it increases the level l over lmax. There are two possible crite-

ria to increase the level. If any of these are met, the level l will be increased:

(i1) the level l is unchanged for 300 epochs

(i2) the threshold value for the percentage gap with the optimal solution of the

testdata is exceeded

The first incrementing criterion (i1) is trivial and prohibits the indefinite stagnation

at a single problem size. This results in each agent being trained for a maximum of

3000 (10 SPS · 300) epochs. The second criterion is more complex and defined in

greater detail by the following inequality:

Cmax[l] ≤
C∆

max[l]︷ ︸︸ ︷
C∗

max[l] · (1 + topt) (4.1)

with

Cmax[l] makespans of level l of testdata (D1, section 5.1)

C∗
max[l] optimal makespans of level l of testdata (D1)

topt optimality threshold (15%)

This termination criterion is used for all new CL approaches presented here, as it is

dynamic and yet has no direct influence on the learning behaviour of the agents. At

this point, it should be noted that [6] does not mention the first criterion. However,

since it is utilised in the published code, it is also adopted in this paper.

4.2.1 Presentation of the strategies

Each strategy developed in this thesis is presented in different ways. First, a strategy

is described and then precisely defined by a pseudocode. In addition, the presenta-

tion of some strategies is supported by further illustrations. For example, a figure

is used which shows the distribution of the DTS of the instances used as a boxplot

for the first 10 epochs of training. This is intended to provide a simple overview of

how the strategies generate the training data.

The inputs of the pseudocodes are explained below. The used values of the

parameters can be found in the appendix. The parameters lmin and lmax are positive

21



integers that denote the lower and upper limits for the RASCL levels respectively.

The parameter u is a rate for updating the percentage gaps g. The data loader

testdata represents the data set (D1) mentioned in the section 5.1. The input θ

represents all model parameters in a simplified form. The constant topt is a threshold

value for ascending a RASCL level. The list of batchsizes may seem unexpected in

this context. It describes not only the batch sizes for training the actor and critic

models but also the number of instances generated for each training step. It should

be noted that the pseudocode uses the python syntax [42, 43] for slicing arrays.

Since all strategies have the same termination criterion, a complete pseudocode

for each strategy would generate many repetitions. To avoid these repetitions, the

method PDTC (i, l, θ) → g, l is defined first, which is used by the other strategies.

This partition improves the readability of the algorithms.

Algorithm 1 PDTC (i, l, θ)→ g, l
Performance Distribution and Termination Check
Inputs: positive integers lmax, u, dataloader testdata,

non-negative float optimality threshold topt,
opt. makespans of testdata C∗

max

1: if i%u == 1 then ▷ every uth epoch
2: Update Cmax array of makespans on testdate of θ
3: for k = lmin, . . . , lmax do
4: C∆

max[k]← C∗
max[k] · (1 + topt) ▷ add 15% to opt. makespan

5: g[k]← (Cmax[k]− C∆
max[k]) \ C∆

max[k] ▷ calculate gap to C∆
max[k]

6: end for
7: if Cmax[l] ≤ C∆

max[l] or l unchanged for 300 epochs then
8: l← l + 1 ▷ increase level
9: if l > lmax then

10: Terminate training
11: end if
12: end if
13: g ← g[lmin : l] ▷ limit distribution based on l
14: g ← softmax(g) ▷ apply softmax to g
15: end if
16: return g, l ▷ return performance distribution and level

22



Algorithm 2 Reinforced Adaptive Curriculum Learning (RASCL) algorithm

Inputs: initialised network parameters θ, array of batchsizes, positive integer lmin

1: l← lmin

2: for i = 1, . . . , 3000 do
3: g, l← PDTC(i, l, θ) ▷ see algorithm 1
4: Sample current size s following distribution of g
5: Generate (batchsizes[s]) instances of size s
6: Update θ on instances
7: end for
8: return trained parameters θ

Algorithm 3 No Curriculum Learning (NOCL) algorithm

Inputs: initialised network parameters θ, array of batchsizes, positive integer lmin

1: l← lmin

2: for i = 1, . . . , 3000 do
3: g, l← PDTC(i, l, θ) ▷ see algorithm 1
4: ▷ note that g is not used here
5: Sample current size s following equal distribution over SPS
6: Generate (batchsizes[s]) instances of size s
7: Update θ on instances
8: end for
9: return trained parameters θ

4.3 Combination of RASCL and DTS

This strategy class adds a second dimension to the curriculum by combining the

successful approaches of [6] and [7]. RASCL lays the foundation for the choice of

problem size, while a new feature is introduced to sort instances within a problem

size: DTS (as in section 2.5.2).

There is a fundamental hurdle to overcome. Since the models make no difference

when sorting instances within a training batch, a different solution is required to sort

instances within a problem size. A new parameter is introduced for this purpose.

The new parameter stepsize determines the number of consecutive epochs on which

the model is trained at one size. By default, RASCL selects a new size from the

distribution for each training step. However, the strategies in this class remain

at the same size for stepsize epochs. This repetition allows for the incorporation

of the DTS-based application. At the start of each repetition, a set of stepsize-

fold instances is randomly generated, solved with a PDR, and then sorted. These

instances are then divided into stepsize subsets and used for training in that order.

The authors of [7] chose MTR as the PDR for measuring the difficulty of an

23



instance, since MTR has the lowest average optimality gap compared to other fre-

quently used PDRs. In the following, a differentiated check is also made as to

whether MTR also performs best in each of the 10 SPS and not just on average. As

shown in the appendix, MTR has the smallest makespans in each of the 10 SPS com-

pared to the other PDRs considered. The table 4.2 shows the average Makespans of

5 PDRs on average across all problem sizes. Thus, MTR is also used in this work

to determine the DTS.

PDR Random SPT LPT MTR LRPT

Average Makespan 39.4 168.0 168.2 27.6 31.8

Table 4.2: Average makespan per PDR on 1,000 randomly generated instances per
SPS

The following two sections present two CL strategies of this class. The first strategy

(CCL) implements the above-mentioned approach in a primitive manner, while the

second strategy (SSCL) builds on the first and pursues a more sophisticated goal.

4.3.1 Combined Curriculum Learning (CCL)

This strategy follows the approach already mentioned and is called Combined Cur-

riculum Learning (CCL). According to the findings of [7], it can be beneficial to

train on the hard instances first. For this reason, the inverted strategy is also intro-

duced: Inverted Combined Curriculum Learning (ICCL). Only the order is inverted

when sorting according to the DTS, while the rest remains identical.

Figure 4.1 illustrates how the strategy works by showing the DTS of the gener-

ated instances as a box plot. Each box comprises 128 instances. With a stepsize of

4, the periodically repeated increase in the DTS can be recognised. As the PDTC()

method has not yet increased the level in the first 10 epochs (l = lmin), all the

instances shown are of size 6× 6 (first SPS). This results in a DTS range of approx-

imately 4 to 10. Furthermore, it is easy to see that the values are strongly centered

in the middle. Very high and very low values are only rarely represented, suggesting

that the distribution is similar to the normal distribution.

An equivalent figure for the inverted variant of the strategy is not shown here, as

only the order of the 4 boxes within a repetition would be inverted.

24



Figure 4.1: Visualisation of CLL with 4 levels and 128 instances per batch

The following pseudocode describes the strategy. The ICCL strategy is equivalent,

with the only difference that the sort order in row 7 is inverted.

Algorithm 4 Combined Curriculum Learning (CCL) algorithm

Inputs: initialised network parameters θ, array of batchsizes,
positive integer lmin, stepsize

1: l← lmin

2: for i = 1, . . . , 3000 do
3: g, l← PDTC(i, l, θ) ▷ see algorithm 1
4: if i%stepsize == 0 then
5: Sample current size s following distribution of g
6: Generate (batchsizes[s] · stepsize) instances of size s
7: Sort instances by MTR makespans ascending
8: Split instances into stepsize blocks → b
9: end if

10: Update θ on b[i%stepsize]
11: end for
12: return trained parameters θ

4.3.2 Spaced Sampling Curriculum Learning (SSCL)

The Spaced Sampling Curriculum Learning strategy is based on CCL and focuses

on the selection of instances and not just their order during training. If one solves a

large number of instances with MTR and examines the distribution of the makespans

(figure 4.2), it clearly approaches a slightly skewed normal distribution. This means

that there are many instances that are moderately difficult to solve according to

DTS, but very few instances that are either very easy or very hard.

In order to compensate for this imbalance, SSCL generates significantly more

instances than necessary and then selects them sensibly. A new parameter is intro-

25



Figure 4.2: MTR Makespan distribution of 100,000 10×10 instances (µ ≈ 11, σ ≈ 1)

duced for this purpose: spacing which describes how many more times the number of

instances is generated. This procedure becomes clearer if one examines the sorted

makespans as shown in Figure 4.3. The spacing factor now describes the size of

unused instances, while the use segments are equally distanced. With a spacing of

8, this means that the unused areas are 7 (spacing-1) times as large as the used

areas. This type of sampling means that both edges (most easy and hard instances)

are always used, while the middle is only sparsely represented. As with CCL, the

inverted ISSCL strategy is only characterised by the different sorting sequence.

Figure 4.3: Visualisation of spaced sampling on sorted makespans with 4 levels,
spacing=8 and batch size=16

Figure 4.4 again shows the DTS distribution of the epochs. It can be seen that the

first and last epochs of a period are shifted outwards to a greater extent than with

CCL.

26



Figure 4.4: Visualisation of SSCLL with 4 levels, factor=8 and batch size=128

Algorithm 5 Spaced Sampling Curriculum Learning (SSCL) algorithm

Inputs: initialised network parameters θ, array of batchsizes,
positive integer lmin, stepsize

1: l← lmin

2: for i = 1, . . . , 3000 do
3: g, l← PDTC(i, l, θ) ▷ see algorithm 1
4: if i%stepsize == 0 then
5: n← batchsize[s] · stepsize · spacing− (spacing− 1) · batchsize[s]
6: Sample current size s following distribution of g
7: Generate n instances of size s
8: Sort instances by MTR makespans ascending
9: for k = 0, . . . , stepsize− 1 do

10: start← k · batchsize[s] · spacing
11: end← start+ batchsize[s] · spacing− (spacing− 1) · batchsize[s]
12: b[k]← instances[start : end]
13: end for
14: end if
15: Update θ on b[i%stepsize]
16: end for
17: return trained parameters θ

4.4 Hard Instances Curriculum Learning (HICL)

This section presents a strategy that tests a further assumption regarding the results

of [7]. The authors of [7] came to the conclusion that it can be beneficial start

training on the hardest instances. From this, the hypothesis can be derived that

DRL agents generally train better with hard instances in this context. The Hard

Instances CL (HICL) strategy is developed to investigate this hypothesis. It works

in a similar way to SSCL, but with the difference that only the hardest instances

27



Figure 4.6: Visualisation of ISSCL with TODO parameter

are selected. Furthermore, there is also no more stepsize. The problem size is

reselected for each epoch. The spacing factor determines how many more instances

are generated than are required. Figure 4.5 visualises this type of sampling. The

HICL algorithm is also shown below as pseudocode. Figure 4.4 again shows the DTS

distribution of the epochs. All 10 epochs show an approximately equal distribution.

Figure 4.5: Sampling of only hard 6× 6 instances with factor=8, batch size=16

Algorithm 6 Hard Instances Curriculum Learning (HICL) algorithm

Inputs: initialised network parameters θ, array of batchsizes,
positive integer lmin, factor

1: l← lmin

2: for i = 1, . . . , 3000 do
3: g, l← PDTC(i, l, θ) ▷ see algorithm 1
4: Generate (batchsize[s] · factor) instances of size s
5: Sort instances by MTR makespans descending
6: instances← instances[: batchsize[s]] first values of
7: Update θ on instances
8: end for
9: return trained parameters θ

28



4.5 Interpolated Sizes Curriculum Learning (ISCL)

The interpolated sizes curriculum learning (ISCL) strategy takes the novel approach

of expanding the space of problem sizes by using more than just the 10 SPS. While

the other strategies interpret the set of problem sizes as a one-dimensional list and

assign a selection probability to these sizes (denoted as g in algorithm 1), ISCL

interprets the set of problem variables as a two-dimensional discrete space. If the

10 SPS are represented in this space (figure 4.7), the sparse population is quickly

apparent. The assigned values in the figure are currently meaningless and have been

equally distributed for visualisation purposes.

Figure 4.7: Two-dimensional discrete space of problem sizes with the 10 SPS

If the space of problem sizes is expanded in this way, two problems arise which must

be solved. On the one hand, the probability distribution must now be calculated

for many more sizes, and on the other hand, new rules must be created to gener-

ate a curriculum that can dynamically increase the difficulty based on the agent’s

performance. These problems are addressed in the following.

All RASCL-based CL strategies calculate the probability distribution of the prob-

lem sizes by calculating the gaps to a test data set with the 10 SPS. It takes about

90 seconds to determine these values for this sizes. If one wants to determine these

values for all sizes considered in the space (100 · 20 = 2000), this process would

represent a large part of the entire training process. In order to shorten this process

considerably, ISCL only uses the gaps of the 10 SPS and interpolates all missing

values linearly, as described in Algorithm 7.

In order to define a curriculum which, similar to RASCL, gradually incorporates

more problem variables over time, two dimensions must now be considered and no

longer just a linear one-dimensional list. The RASCL level l is also determined for

this purpose. This level represents a problem size with n jobs and m machines,

29



i.e. n ·m operations in total. This number of operations is regarded as a limit in

ISCL and represents a dynamic limit. In addition, 4 further rules are defined in the

following in order to limit the sizes to those similar to the SPS:

Limit Definition Description Type

(l1) n·m ≤ nl ·ml ·1.1 ”not more operations than 110% of the

operations of the current level l”

dynamic

(l2) m ≥ 3 ”at least 3 machines” static

(l3) n ≥ m ”at least as many jobs as machines” static

(l4) m ≥ n
5

”not more than 5 jobs per machine” static

(l5) m ≤ 20 ”not more than 20 machines” static

Table 4.3: Definition of the ISCL space contraints

Figure 4.8 visualises these 5 limits in a continuous space. nl and ml represent the

number of jobs and machines of the current RASCL level l. Here, 30× 20 is chosen

as an example for l These contraints can also be discretised in order to use them to

select valid JSSP sizes.

Figure 4.8: Visualisation of the ISCL space constraints

The following figure 4.9 shows the calculated probability distributions (denoted as

a map in algorithm 7) at two different points in time: after 150 and 1200 epochs.

It shows both how the dynamic limit works and a shift in the probabilities towards

larger problem sizes. This indicates that the agent can already solve the smallest

sizes better, which leads to a smaller gap.

30



Warning: The PDTC() method limits the distribution and applies softmax in lines

13 and 14. However, the ISCL strategy requires the distribution without these two

transformations, and assumes that these transformations are not carried out.

Figure 4.9: ISCL map after 150 and 1200 epochs of training

Algorithm 7 Interpolated Sizes Curriculum Learning (ISCL) algorithm

Inputs: initialised network parameters θ, array of batchsizes, positive integer lmin

1: l← lmin

2: for i = 1, . . . , 3000 do
3: g, l← PDTC(i, l, θ) ▷ see algorithm 1 and warning
4: map← 100× 20 2d-array filled with of 0
5: Fill map with values of g
6: Interpolate every 0 of map linearly
7: Blur map (average of neighbouring values)
8: map← softmax(map)
9: n,m← size of l

10: limit← n×m× 1.1
11: for x = 1, . . . , 100 do
12: for y = 1, . . . , 20 do
13: if x · y > limit or y > x or y < 3 or x\y > 5 then
14: map[x][y]← 0
15: end if
16: end for
17: end for
18: map← map \ sum(map)
19: Sample current size s following distribution of map
20: Generate (batchsizes[s]) instances of size s
21: Update θ on b[i%stepsize]
22: end for
23: return trained parameters θ

31



Chapter 5

Experiments

5.1 Experimental Setup

Three agents per curriculum learning strategy are trained. All hyperparameters

are fixed for all tests. The values used for the batch size, learning rates and other

parameters can be found in the appendix. All metrics are logged using the developer

platform ”Weights & Biases” [44]. Not only the metrics from 5.2 are recorded, but

also other basic measured values. All experiments were carried out on a Linux server

with a 16-core CPU and 256GB RAM.

A total of 4 different sets of JSSP instances are used during the experiments. To

provide an overview of these, they are all listed here.

(TA) Taillard’s set [33] (as in 2.1.3) with 80 instances for the calculation of the gap

difference (following section) and the final results (section 5.3.5)

(D1) 100 instances (10 per SPS) for calculating the performance distribution g in

algorithm 1 (referred to as testdata)

(D2) 80 instances (10 per TA size) for calculation of the Relative Gap as in 5.2

(D3) Training data that gets randomly generated on the fly as described in the

algorithms

To increase the statistical significance, all experiments are carried out three times

with different seeds. A total of 24 agents are trained. Three agents each are trained

with RASCL and NOCL as a baseline and for comparison. Subsequently, three

32



agents are trained with each of the following CL strategies: CCL, ICCL, SSCL,

ISSCL, HICL, ISCL. The appendix contains the parameters used for the strategies.

5.1.1 Used Inference Strategies

A total of three different inference strategies are used during the experiments. The

table 5.1 provides an overview of the different procedures. It is important to note

that there is a change during the experiments. It makes sense to use greedy for

calculating the performance distribution g, so that the agents make optimal decisions

during testing (exploitation). However, the first eight agents were tested using

sampling with as sizesearch of 1. The following 16 agents used greedy for this

calculations. This means that a third of the agents were not tested optimally.

However, the temporal limitations of this work do not allow the repeated training of

8 additional agents. Nevertheless, the results in the following sections do not show

any significant difference between these two groups of agents.

Procedure Dataset Inference Strategy Parameter

Training D3 sampling sizesearch=1

Performance Distribution (g) D1 greedy -

Gap Difference TA sampling sizesearch=128

Relative Gap D2 greedy -

Final Results TA sampling sizesearch=128

Table 5.1: Use of different inference strategies for each procedure of the experiments

5.2 Custom Metrics / Performance Measurement

This section addresses the challenge of measuring the performance of the DRL mod-

els during and after the training. As mentioned in Section 2.1.1, the optimality

gap is the key indicator for classifying how well a model can solve a JSSP. In order

to be able to calculate this value, the optimal makespans of the instances must be

known, as is the case with the set from Taillard [33]. Therefore, after the training

process, the final results of a model are determined by solving the TA instances and

calculating the optimality gaps.

Measuring the performance of a model during training could be done in a similar

33



way, but then the frequent testing in between training would take up a large part

of the time. This calculation for all 80 TA instances takes about 90 minutes. For

this reason, a trade-off is made. These exact values are only determined every 500

epochs (about 4 times in total).

Another metric can now be easily derived from these optimality gaps. Since the

best optimality gaps are known, which were achieved on the Taillard set in [6], the

difference between these values can now be regarded as a further metric, called gap

difference (GD), which is recorded every rateGD = 500 epochs. This value describes

the difference between the equally weighted average of all optimality gaps of RASCL

on the TA set and the equally weighted average of all optimality gaps of the currently

trained model on the TA set. This metric represents the difference in percentage

points and starts in the negative range at the beginning of the training process and

rises above 0 in the best case. It is a simple metric to recognise how well a model

performs compared to the results of [6], while neglecting how well it performs on a

specific problem size.

In order to investigate not only the final performance, but also the learning be-

haviour, a metric is required which can also evaluate the performance during the

training process faster than mentioned above. A faster metric to estimate the per-

formance of a model during training uses a comparison to an already trained model,

called relative gap (RG). For this purpose, another data set (D2) is randomly gen-

erated and solved with a pre-trained model, resulting in a set of makespans that are

sufficient but most likely not optimal. The model was trained with RASCL up to a

JSSP problem size of 20×20. This pre-calculation only needs to be done once before

training all models. The data set generated for this purpose contains the 10 SPS.

In order to decide how many instances a problem size should comprise, one must

weigh up between statistical significance and calculation speed. One instance per

size would lead to a very fast calculation, but would also be heavily dependent on

the random initialisation. A higher number reverses both effects accordingly. In this

work, 10 instances per size are chosen in order to find a balance. It should be noted

that this metric depends not only on the random initialisation of the instances, but

also strongly on the pre-trained model. The metric itself is characterised by the

gap to the pre-calculated makespan. It uses the calculation as one optimality gap

(equation 2.1), but replaces C∗
max by the makespan of the pre-trained model. This

34



Figure 5.1: Distribution of processing time spent on all training procedures by one
agent

relative gap is suitable for a quick and relative comparison between different CL

strategies. The absolute number, however, is less meaningful as it only represents

the comparison to a freely chosen model. The calculation of this metric takes about

30 minutes and is recorded every rateRG = 150 epochs. Figure 5.1 shows the distri-

bution of processing times for all procedures. The relative gap is used to determine

when a model is saved. If a new lowest value is reached during training, the model is

saved. Saving the models is important for the final tests. The two metrics together

require over 40% of the total training time for a DRL agent.

5.3 Experiment Results

This section presents the test results, beginning with a cautionary note regarding a

potential implementation error. The results are then categorised and presented.

5.3.1 Disclaimer

The first important observation to make is that all agents (including the one trained

with RASCL) achieve at least 13%p worse results than in [6].

It is difficult to find the reasons for this difference. The same inference strategy

was used and for RASCL, an equivalent implementation was used. There is only

one difference between the setup of [6] and these experiments. In this work, the

batch sizes were halved due to limited computational capacity. However, training

with the same batch sizes only improves the results by 0.041%p. This adjustment

therefore does not close this large gap.

Thus, an error in the implementation of this work cannot be ruled out. Since

35



no other possible reason is found, all further results and discussions of these refer

to the relative differences between the CL strategies, which can still be determined.

The baseline comparison is therefore not an agent from [6], but an agents trained

with RASCL in this work.

5.3.2 Gap Difference

The Gap Difference metric is visualised below in figure 5.2. There are 24 points

every 500 epochs, which represent the respective agents. Furthermore, for each of

the 8 strategies, an average of the three values per point in time is shown as a line.

As described in section 5.2, it shows the average difference in percentage points to

the best results achieved with RASCL in [6], which provides a quick overview of

how well an agent performs overall. The values at step 0 are not shown here, as

these only depend on the random initialisation and do not depend on the agent, but

would change the scaling considerably.

Figure 5.2: Gap Differences (higher is better)

It should be noted that one data point is omitted to make the figure easier to read:

the ISSCL strategy has reached a GD value of approximately -23%p at 2000 epochs.

Since this metric only produces the first meaningful value after 500 training

steps, it is not possible to recognise a nice learning progression for all CL strategies

at the beginning, as the RG does. It is immediately noticeable that NOCL has one

measuring point more than all other strategies. This is due to the fact that NOCL

36



achieves the worst results in general, as well as the fact that this agent trains the

slowest and finishes about 500 training steps later. This behaviour is to be expected

and not unreasonable, since CL can be effective in many areas, as already mentioned

in 2.3.

Most of the strategies achieve GDs of approximately -17%p to -13%p and are

therefore relatively close to each other. The best GD is achieved by the SSCL

strategy with a value of -13.43%p, closely followed by RASCL with −13.75%p.

The results of this metric are very noisy overall and make it difficult to clearly

rank the strategies. Contrary to previous assumptions, the agents which train with-

out a curriculum (NOCL) are not the worst. This contradicts the previous assump-

tions and the referenced results.

Apart from the one strongly deviating point from ISSCL (which is not shown),

the ISCL strategy is clearly the worst on average. There could be several reasons

for this. It could be due to the fact that the agents train many JSSP sizes that

are not covered by this metric. A large part of the time is therefore invested in

training variables that are not part of the SPS and are therefore not tested by this

metric. Furthermore, the ISCL space is spatially expanded in a direction in which

more jobs and fewer machines are represented. This can be clearly seen in Figure

4.8, which shows the blue area, which tends to be extended downwards and to the

right. It is possible that an extension in another or several directions would improve

the results.

The second worst performing strategy is ISSCL. This result is particularly in-

teresting because the non-inverted variant (SSCL) achieves better results. This

observation suggests that, contrary to the results of Waubert de Puiseau et al. [7],

it is helpful to start training with easy instances.

Overall, it can also be observed that most strategies are difficult to separate from

one another according to this metric. RASCL, SSCL, HICL, CCL, NOCL and ICCL

are very close to each other and often cross during training. This proximity (also to

NOCL) would indicate a low relevance of a CL strategy in this context.

5.3.3 Relative Gap

Figure 5.3 shows the relative gap metric in the same way as for the gap difference.

In this figure, the first data point of each strategy is also removed, as this has no

37



significance for the strategy and changes the scaling considerably. It is important to

note that, as can be seen from the truncated line, the scaling of the y-axis has been

greatly adjusted, as an agent trained with the HICL strategy reaches an RG value

of approximately 250% at one point. Since the exact value does not play a major

role, the scaling is adjusted so that all other values are easier to recognise. Two

points of an agent trained with ISSCL are also outside the selected scaling. These

are located at around 25% and can be easily recognised by the upward deflections

of the average line.

Figure 5.3: Relative Gaps (lower is better)

These large deviations can also be found to a similar extent in the achieved reward.

Both agents receive correspondingly lower rewards at these points in time. These

deviations can presumably be attributed to the generally unstable learning behaviour

of DRL agents. Such a large difference is unlikely to be due to the differences between

the various strategies.

This metric shows largely the same results as the gap difference. Agents trained

with ISCL perform the worst and ISSCL also leads to a poor result. NOCL is also

represented roughly in the middle again. In contrast to GD, a training process is

shown at the beginning up to around 1000 epochs, as the sampling rate is signifi-

cantly higher for this metric. Particularly in the first 500 epochs, a clear reduction

can be seen for all strategies. The observable correlation between these metrics is

discussed in more detail in the following section.

38



5.3.4 Correlation between Relative Gap and Gap Difference

This section addresses the relationship between the two metrics relative gap (RG)

and gap difference (GD). Both metrics are intended to measure how well an agent

is performing. RG measures the difference to a pre-trained model and GD measures

the performance on a known data set. Under these circumstances, one would expect

a correlation that if one metric improves, the other will also improve. Note that RG

improves when the value decreases and GD improves when the value increases, as

described in 5.2.

Figure 5.4 shows a comparison of the measured values in a scatter diagram. The

GD is shown on the X-axis and the RG on the Y-axis. Each strategy is represented

by 12 measurement points at the time points 500, 1000, 1500, 2000. As the GD is

measured every 500 steps and the RG every 150 steps, there are only a few points in

time at which both metrics are recorded. For this reason, the closest measurement

point is used, which could slightly distort the presentation. The graph includes a

linear regression to facilitate the identification of the correlation.

Figure 5.4: Correlation between Relative Gap and Gap Difference

The Pearson Correlation Coefficient (PCC) can be used to quantify the correlation

between these metrics. The PCC measures the strength and direction of the linear

relationship between two variables. The value can be between -1 and 1, where -1

represents a perfect negative linear relationship, 1 a perfect positive linear relation-

ship and 0 no linear relationship. It is the covariance of the two variables divided

39



by the product of their standard deviations, as defined in equation 5.1. Here, X

describes the gap differences and Y the relative gaps.

ρX,Y =
Cov(X, Y )

σXσY

(5.1)

In this case, the PCC takes on a value of ρ ≈ −0.7697. This negative value indicates

that there is a moderate to strong negative linear relationship between the two vari-

ables. The correlation is very significant with a p-value of about 10−17%, indicating

that the current result would be very unlikely if the correlation coefficient were zero.

This result demonstrates that the two metrics exhibit similar behaviour. If a model

improves in one metric, it also tends to achieve better results in the other metric.

5.3.5 Results on Taillard’s instances

The following results on the instances of Taillard [33] have the highest significance, as

they use the models from a point in time at which they were best and are determined

with the best inference strategy and additionally.

The figure 5.5 consists of 8 groups with 8 bars with error bars representing the

corresponding minimum and maximum values of the three experiments per CL-

strategy. The bars represent the average optimality gap over the three experiments

per strategy. Furthermore, the results of [6] are also shown as a dashed line.

Apart from the major difference to [6] mentioned in the disclaimer, small regular

differences between the CL strategies can be identified. For the 8 problem sizes of

the TA set analysed, HICL is ranked first four times and second four times, making

it the best CL strategy overall according to these results. However, it should be

noted that these differences are on the one hand very small and on the other hand

not so significant, as large error bars indicate a strong variance.

As the differences between the strategies are difficult to recognise with this scal-

ing, a performance order for the strategies is created for each problem size. From

this, an average can be determined for each strategy, resulting in an easy-to-read

ranking of the strategies as shown in Figure 5.6.

40



Figure 5.5: Final Results on TA with sampling (sizeserach=128). Order of strategies
from left to right: RASCL, NOCL, CCL, ICCL, SSCL, ISSCL, HICL, ISCL

Figure 5.6 clearly shows HICL as the the best CL strategy, while ISCL is almost

always the worst. Furthermore, based on this ranking, every strategy developed in

this thesis except ISCL is better than RASCL. Another interesting observation is

that the two inverted variants are better than the non-inverted ones: ICCL is better

than CCL and ISSCL is better than SSCL. This also fits with HICL being the best,

as the inverted strategies and HICL all start with the most difficult instances. This

thus confirms the hypothesis from Section 4.4 that DRL agents achieve better final

results when they start training on difficult JSSP instances. However, this figure

must be viewed in its entire context, as it may greatly emphasise the differences.

Figure 5.6: Average ranking of strategies based on figure 5.5 (lower is better)

41



5.4 Summary of Results

This section summarises the results of the various CL approaches. It presents the

most interesting observations, but does not go into full detail.

Firstly, the disclaimer in Section 5.3.1 should be reiterated at this point, as it

was not possible to reproduce the results of [6] on Taillard’s instances [33] within the

scope of this work. The best DRL agents of this work achieve optimality gaps which

are about 138% (+13%p) worse than those of Iklassov et al. [6]. This could be due

to an undetected implementation error in this work. For this reason, the strategies

are not compared with the results of [6], but are analysed in a relative comparison

to each other. Overall, a strong variance in the results can be observed, so that

the range of optimality gaps overlaps strongly between the strategies. Nevertheless,

consistent differences between the strategies can be observed on average.

The CL strategy that leads to the worst results is ISCL. This strategy expands

the space of problem sizes used for training. It is the only one that is worse than the

comparison strategy RASCL. There could be two possible reasons for this. Either

the space of problem sizes has been chosen unfavourably or the measurement, which

is limited to 8 sizes, cannot fully and correctly capture the performance of the agents.

The strategies CCL, ICCL, SSCL and ISSCL are all slightly better than RASCL

but are subject to relatively large fluctuations in the results. This class of strategies

uses a second dimension so that both the problem size and the difficulty of the

instances within problem size are selected specifically and dynamically. Nevertheless,

a very interesting observation can be made within this class of strategies: The

strategies that start with the most difficult instances (ICCL and ISSCL) are each

better than the variants that do exactly the opposite (CCL and SSCL). These results

are consistent with [7].

The best results are achieved by the HICL strategy. A DRL agent that uses

this strategy for training only uses the most difficult instances. This is therefore a

continuation of the results of [6]. This strategy achieves the lowest optimality gaps

in almost every problem size and is only dependent on a single parameter (spacing).

Another interesting aspect is the fact that the use of no curriculum (NOCL) does

not always and clearly lead to a worse result than RASCL. The results from Figures

5.5 and 5.6 even show the opposite: on average, NOCL is better than RASCL. If this

42



result is not due to an error in the implementation of this work, it could be because

Iklassov et al. [6] did not train their models without a curriculum for comparison.

They used other methods for comparison. Thus, the developed model itself could

already lead to an advantage over other methods, independent of a CL approach.

43



Chapter 6

Future Work

After summarising the results of this work from the last chapter, this chapter deals

with potential future work.

The development and investigation of an inverted variant of RASCL could yield

interesting results. So far, the assumption has always been that DRL agents learn

best when they start on small JSSP problem sizes and increase them during training.

The fact that the reverse order has not yet been investigated and that [7] and

the results of this work show that it is advantageous to start with hard instances

(within a problem size) strengthens the hypothesis that RASCL inverted could be

better than RASCL. A confirmation of this hypothesis would then also lead to the

assumption that the other CL strategies presented here could also be better when

inverted.

The modification and extension of the performance measurements of the agents

could be the subject of further work. The measurements in this paper are limited

to the 10 SPS. While ISCL is the only strategy that extends the space of problem

sizes for training, it is still only evaluated on the 10 SPS or the 8 TA sizes. The

investigation and evaluation of all strategies on an extended set of problem sizes

could yield further effects and results. Furthermore, the space of problem sizes

could generally be expanded differently than is the case with ISCL.

The use of MTR to determine the difficulty of an instance has proven to be useful,

but other methods to determine this could achieve even better results. Finally, a

more frequent repetition of all experiments would further increase the statistical

significance of the results, as this work used only 3 repetitions.

44



References

[1] T. Yamada and R. Nakano, Genetic algorithms in engineering systems. No. 55

in IEE control engineering series, London: Institution of Electrical Engineers,

1997.

[2] H. Xiong, S. Shi, D. Ren, and J. Hu, “A survey of job shop scheduling problem:

The types and models,” Computers & Operations Research, vol. 142, p. 105731,

June 2022.

[3] D. Hoitomt, P. Luh, and K. Pattipati, “A practical approach to job-shop

scheduling problems,” IEEE Transactions on Robotics and Automation, vol. 9,

pp. 1–13, Feb. 1993.

[4] B. Yan, M. A. Bragin, and P. B. Luh, “Novel Formulation and Resolution of

Job-Shop Scheduling Problems,” IEEE Robotics and Automation Letters, vol. 3,

pp. 3387–3393, Oct. 2018.

[5] L. Perron and V. Furnon, “Or-tools.” https://developers.google.com/

optimization/.

[6] Z. Iklassov, D. Medvedev, R. Solozabal, and M. Takac, “Learning to generalize

Dispatching rules on the Job Shop Scheduling,” Nov. 2022. arXiv:2206.04423

[cs].

[7] C. Waubert De Puiseau, H. Tercan, and T. Meisen, “Curriculum Learning in

Job Shop Scheduling using Reinforcement Learning,” 2023. Publisher: Han-

nover : publish-Ing.

[8] S. Arora and B. Barak, Computational Complexity: A Modern Approach. Cam-

bridge University Press, 1 ed., Apr. 2009.

45

https://developers.google.com/optimization/
https://developers.google.com/optimization/


[9] A. Jain and S. Meeran, “Deterministic job-shop scheduling: Past, present and

future,” European Journal of Operational Research, vol. 113, pp. 390–434, Mar.

1999.

[10] O. Shylo, “Best known lower and upper bounds: Job Shop Scheduling Problem

: Taillard’s instances.,” Dec. 2020.

[11] O. Shylo, “Best known lower and upper bounds: Job Shop Scheduling Problem

: Demirkol’s instances.,” Dec. 2020.

[12] M. Kemmerling, M. Combrzynski-Nogala, A. Gannouni, A. Abdelrazeq, and

R. H. Schmitt, “Job and Operation Entropy in Job Shop Scheduling: A

Dataset,” Aug. 2023.

[13] S. S. Panwalkar and W. Iskander, “A survey of scheduling rules,” Operations

research, vol. 25, no. 1, pp. 45–61, 1977.

[14] J. Adams, E. Balas, and D. Zawack, “The shifting bottleneck procedure for job

shop scheduling,” Management science, vol. 34, no. 3, pp. 391–401, 1988.

[15] R. Cheng, M. Gen, and Y. Tsujimura, “A tutorial survey of job-shop scheduling

problems using genetic algorithms—i. representation,” Computers & industrial

engineering, vol. 30, no. 4, pp. 983–997, 1996.

[16] M. Dell’Amico and M. Trubian, “Applying tabu search to the job-shop schedul-

ing problem,” Annals of Operations research, vol. 41, no. 3, pp. 231–252, 1993.

[17] E. F. Morales and H. J. Escalante, “A brief introduction to supervised, unsuper-

vised, and reinforcement learning,” in Biosignal Processing and Classification

Using Computational Learning and Intelligence, pp. 111–129, Elsevier, 2022.

[18] Y. Li, “Deep Reinforcement Learning: An Overview,” Nov. 2018.

arXiv:1701.07274 [cs].

[19] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A

survey,” The International Journal of Robotics Research, vol. 32, pp. 1238–1274,

Sept. 2013.

46



[20] D. Vengerov, “A reinforcement learning approach to dynamic resource alloca-

tion,” Engineering Applications of Artificial Intelligence, vol. 20, pp. 383–390,

Apr. 2007.

[21] Y. Bi, S. Kapoor, and R. Bhatia, eds., Proceedings of SAI Intelligent Systems

Conference (IntelliSys) 2016: Volume 2, vol. 16 of Lecture Notes in Networks

and Systems. Cham: Springer International Publishing, 2018.

[22] P. Soviany, R. T. Ionescu, P. Rota, and N. Sebe, “Curriculum Learning: A

Survey,” International Journal of Computer Vision, vol. 130, pp. 1526–1565,

June 2022.

[23] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,”

in Proceedings of the 26th annual international conference on machine learning,

pp. 41–48, 2009.

[24] L. Jiang, D. Meng, Q. Zhao, S. Shan, and A. Hauptmann, “Self-Paced Curricu-

lum Learning,” Proceedings of the AAAI Conference on Artificial Intelligence,

vol. 29, Feb. 2015.

[25] M. Lisicki, A. Afkanpour, and G. W. Taylor, “Evaluating Curriculum Learning

Strategies in Neural Combinatorial Optimization,” Nov. 2020. arXiv:2011.06188

[cs].

[26] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Com-

putation, vol. 9, pp. 1735–1780, Nov. 1997. Conference Name: Neural Compu-

tation.

[27] O. Vinyals, S. Bengio, and M. Kudlur, “Order Matters: Sequence to sequence

for sets,” Feb. 2016. arXiv:1511.06391 [cs, stat].

[28] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural Combinatorial

Optimization with Reinforcement Learning,” Jan. 2017. arXiv:1611.09940 [cs,

stat].

[29] W. Kool, H. van Hoof, and M. Welling, “Attention, Learn to Solve Routing

Problems!,” Feb. 2019. arXiv:1803.08475 [cs, stat].

47



[30] Y.-D. Kwon, J. Choo, B. Kim, I. Yoon, Y. Gwon, and S. Min, “POMO: Policy

Optimization with Multiple Optima for Reinforcement Learning,” in Advances

in Neural Information Processing Systems, vol. 33, pp. 21188–21198, Curran

Associates, Inc., 2020.

[31] C. K. Joshi, T. Laurent, and X. Bresson, “An Efficient Graph Convolu-

tional Network Technique for the Travelling Salesman Problem,” Oct. 2019.

arXiv:1906.01227 [cs, stat].

[32] L. Wang, X. Hu, Y. Wang, S. Xu, S. Ma, K. Yang, Z. Liu, and W. Wang, “Dy-

namic job-shop scheduling in smart manufacturing using deep reinforcement

learning,” Computer Networks, vol. 190, p. 107969, May 2021.

[33] E. Taillard, “Benchmarks for basic scheduling problems,” European Journal of

Operational Research, vol. 64, pp. 278–285, Jan. 1993.

[34] C. Zhang, W. Song, Z. Cao, J. Zhang, P. S. Tan, and X. Chi, “Learning to Dis-

patch for Job Shop Scheduling via Deep Reinforcement Learning,” in Advances

in Neural Information Processing Systems, vol. 33, pp. 1621–1632, Curran As-

sociates, Inc., 2020.

[35] Google LLC, “Google scholar.” https://scholar.google.de/, Jan. 2024.

[36] F. M. Wittmann, “WittmannF/sort-google-scholar,” Jan. 2024. original-date:

2016-04-30T00:55:03Z.

[37] W. Zhang and T. G. Dietterich, “A reinforcement learning approach to job-shop

scheduling,” in Ijcai, vol. 95, pp. 1114–1120, 1995.

[38] M. E. Aydin and E. Öztemel, “Dynamic job-shop scheduling using reinforce-

ment learning agents,” Robotics and Autonomous Systems, vol. 33, no. 2-3,

pp. 169–178, 2000.

[39] B. Waschneck, A. Reichstaller, L. Belzner, T. Altenmüller, T. Bauernhansl,

A. Knapp, and A. Kyek, “Optimization of global production scheduling with

deep reinforcement learning,” Procedia Cirp, vol. 72, pp. 1264–1269, 2018.

[40] S. Luo, “Dynamic scheduling for flexible job shop with new job insertions by

deep reinforcement learning,” Applied Soft Computing, vol. 91, p. 106208, 2020.

48

https://scholar.google.de/


[41] J. Shahrabi, M. A. Adibi, and M. Mahootchi, “A reinforcement learning ap-

proach to parameter estimation in dynamic job shop scheduling,” Computers

& Industrial Engineering, vol. 110, pp. 75–82, 2017.

[42] Python Software Foundation, “Slice objects - python 3.9.17 documentation.”

https://docs.python.org/3.9/c-api/slice.html, Jan. 2023.

[43] J. Przywóski, “[] (slicing) - python reference (the right way) 0.1

documentation.” https://python-reference.readthedocs.io/en/latest/

docs/brackets/slicing.html, July 2015.

[44] Weights and Biases Inc., “Weights & biases: The ai developer platform.”

https://wandb.ai/site, Jan. 2024.

49

https://docs.python.org/3.9/c-api/slice.html
https://python-reference.readthedocs.io/en/latest/docs/brackets/slicing.html
https://python-reference.readthedocs.io/en/latest/docs/brackets/slicing.html
https://wandb.ai/site


Appendix

Final Results on Taillard’s Instances

1. Run 15× 15 20× 15 20× 20 30× 15 30× 20 50× 15 50× 20 100× 20

RASCL 15.38 19.78 18.59 21.78 24.6 15.31 17.73 9.05

NOCL 15.62 21.25 20.24 22.93 25.06 15.55 18.64 9.52

CCL 14.42 20.57 18.39 22.32 24.41 15.44 16.94 9.0

ICCL 14.74 20.4 18.54 21.49 25.37 15.39 18.07 9.12

SSCL 14.8 20.35 18.71 22.54 25.3 15.11 17.94 9.16

ISSCL 14.3 19.81 17.67 21.2 23.88 14.75 17.16 9.1

HICL 14.34 18.96 17.85 21.18 24.07 14.76 17.34 8.75

ISCL 15.52 20.95 19.19 22.77 25.5 14.79 18.17 9.12

2. Run 15× 15 20× 15 20× 20 30× 15 30× 20 50× 15 50× 20 100× 20

RASCL 14.13 19.27 18.11 21.81 23.72 15.1 17.27 8.97

NOCL 13.47 19.69 17.42 21.05 23.98 14.62 16.84 8.97

CCL 15.01 20.1 17.85 21.85 24.73 15.41 16.86 9.17

ICCL 15.08 19.9 17.9 21.22 23.89 15.27 17.4 9.03

SSCL 14.8 20.24 17.78 21.69 24.88 14.49 17.85 8.62

ISSCL 14.43 20.56 19.9 21.75 24.94 15.25 17.63 8.95

HICL 13.63 19.59 18.13 21.4 23.8 15.15 17.4 9.19

ISCL 16.06 20.54 20.19 22.29 26.06 15.53 18.49 9.4

3. Run 15× 15 20× 15 20× 20 30× 15 30× 20 50× 15 50× 20 100× 20

RASCL 15.01 19.99 19.91 22.6 25.65 15.86 18.38 9.41

NOCL 15.01 19.55 17.55 20.87 23.61 15.34 17.46 8.88

CCL 15.08 20.14 18.37 22.47 23.69 15.07 17.66 9.14

ICCL 14.71 19.46 17.81 21.02 23.96 15.24 17.5 8.94

SSCL 15.15 20.21 20.33 21.21 24.5 15.44 17.57 8.8

ISSCL 14.31 19.79 18.29 21.89 24.19 15.42 17.35 9.02

HICL 14.86 19.87 18.76 21.07 24.31 15.31 17.23 8.99

ISCL 15.71 20.29 18.72 21.83 25.3 15.61 18.35 9.5

[6] 15× 15 20× 15 20× 20 30× 15 30× 20 50× 15 50× 20 100× 20

RASCL 9.02 10.58 10.87 13.98 16.09 9.32 9.89 3.96

Table: Optimality gaps in % to the Taillard instances [33] of all strategies. For each
of these 3 runs per strategy, the best optimality gap per problem size is printed in
bold. The results of [6] are shown below for comparison.

50



Average makespan per PDR per problem size

The table contains the average makespans achieved by the corresponding PDR on

1,000 randomly generated instances of a problem size. The same set of instances

were used for each PDR to ensure comparability. The lowest value is printed bold

in each column.

6x6 10x10 15x15 20x15 20x20 30x15 30x20 50x15 50x20 100x20

RND 7.7 14.7 23.7 28.1 33.1 36.6 42.1 52.3 59.1 97.0

SPT 11.5 29.6 65.8 85.9 117.5 126.8 174.6 209.7 287.6 571.3

LPT 11.6 30.0 65.9 86.1 118.3 126.8 174.8 209.9 287.5 571.4

MTR 6.1 10.9 17.0 19.9 23.1 25.5 29.1 36.5 40.3 67.4

LRPT 6.5 11.8 18.7 22.2 25.3 29.5 33.0 43.0 47.1 81.0

Table 6.1: Average makespan per PDR per problem size

Configurations

All constant parameters are shown in the following table.

Parameter Value Description

αactor 10−4 learning rate of actor model

αcritic 10−4 learning rate of critic model

ttop 0.15 adaptive threshold

stepsize 4 stepsize for strategies: CCL, ICCL, SSCL, ISSCL

spacing 8 spacing for strategies: SSCL, ISSCL, HICL

u 100 rate of calculating the performance distribution g and level

l

rateGD 500 sampling rate for metric gap difference

rateRG 150 sampling rate for metric relative gap

Table: Assigned values of the parameters

51



Name, Vorname:

E r k l ä r u n g

gem. § 15 Abs. 6 PO (Allgemeine Bestimmungen)

Hiermit erkläre ich, dass ich die von mir eingereichte Abschlussarbeit (Bachelor-

Thesis) selbständig verfasst und keine anderen als die angegebenen Quellen und

Hilfsmittel benutzt sowie Stellen der Abschlussarbeit, die anderen Werken dem

Wortlaut oder Sinn nach entnommen wurden, in jedem Fall unter Angabe der Quelle

als Entlehnung kenntlich gemacht habe.

Datum, Unterschrift:

E r k l ä r u n g

Hiermit erkläre ich micht damit einverstanden, dass meine Abschlussarbeit (Bachelor-

Thesis) wissenschaftlich interessierten Personen oder Institutionen und im Rahmen

von externen Qualitätssicherungsmaßnahmen des Studienganges zur Einsichtnahme

zur Verfügung gestellt werden kann.

Korrektur- oder Bewertungshinsweise in meiner Arbeit dürfen nicht zitiert werden.

Datum, Unterschrift:

52


